This memorandum consists of 15 pages.
NOTE:
- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in **ALL** aspects of the marking memorandum.

QUESTION 1

<table>
<thead>
<tr>
<th>1.1</th>
<th></th>
</tr>
</thead>
</table>
| 1.2 | $5 + 12 + 2 + x + 75 - x + 66 - x + 3 + 2 = 103$
$x = 62$

Note:
Although CA applies to the question, the candidate cannot have negative or fraction answers.

<table>
<thead>
<tr>
<th>1.3.1</th>
<th>$P(\text{only eats chicken and fish and no vegetables}) = \frac{4}{103}$</th>
</tr>
</thead>
</table>

| 1.3.2 | $P(\text{any two}) = \frac{12 + 4 + 13}{103} = \frac{29}{103}$

Accept

$P(\text{any two}) = \frac{91}{103}$

Note:
Although CA applies to the question, the candidate cannot have negative or value greater than 1.
QUESTION 2

2.1	No. The chose a Wednesday morning, when most people are at work. This is not a reliable time to do a survey about customer satisfaction. Most supermarkets are not busy at this time. Only 130 customers of a possible very large sample were interviewed. This is a very small number in comparison to the total number of customers that use a supermarket in a week.	No ✓ ✓ acceptable reason
	Accept: Yes, with a reasonable justification related to real life situations for example: very small rural community.	Yes ✓ ✓ acceptable reason (2)
	Note: If the candidate answers YES or NO ONLY, then 0 / 2 marks.	

| 2.2 | \[
\frac{22}{100} \times 130 = 28,6 \quad \text{OR} \quad \frac{78}{100} \times 130 = 101,4 \\
130 - 101,4 = 28,6
\] | ✓ \(\frac{22}{100}\) or 22% ✓ 28 or 29 or 28,6 (2) |

| | **Accept:** 28 or 29 |

| 2.3 | Choose a time when your store is busy, possibly Saturday or Sunday mornings. Interview more people to get a realistic point of view on customer service. Observe customer service over a longer period of time. Make use of questionnaires. | ✓ ✓ any two valid reasons (2) |

| **Note:** If yes in 2.1, the reasons must be relevant. | 6 |
QUESTION 3

3.1

\[
\frac{68}{100} \times 20000 = 13600
\]

OR

\[
\frac{66.7}{100} \times 20000 = 13340
\]

OR

\[
\frac{68.3}{100} \times 20000 = 13660
\]

✓ 68 or 66.7 or 68.3 or \(\frac{2}{3} \)
✓ answer

3.2

Lowest weight

\[
= 182 - 3(0.454)
\]

= 180,638 grams

Range = 183,362 – 180,638

= 2,724

OR

Range = 6 \times 0.454

= 2,724

Answer only: full marks

If candidate uses one or two standard deviations:

max 2 marks

✓ correct 3 sd
✓ lowest weight
✓ highest weight
✓ difference

✓ 6
✓ 0.454
✓ answer

Accept:

Range = 8 \times 0.454

= 3,632

[6]
QUESTION 4

4.1 Scatter plot showing resting heart rate vs heart rate after exercising

- All 12 points plotted correctly
- 7 – 11 points plotted correctly
- 2 – 6 points plotted correctly

4.2 $a = 25.23 \ (25.22587269\ldots)$
 $b = 0.81 \ (0.8143737166\ldots)$
 \[\hat{y} = a + bx \]
 \[\hat{y} = 25.23 + 0.81x \]

 If using pen and paper method:
 \[\bar{x} = 71.25 \]
 \[\bar{y} = 83.25 \]
 \[a = 25.23 \ (25.22587269\ldots) \]
 \[b = 0.81 \ (0.8143737166\ldots) \]
 \[\hat{y} = a + bx \]
 \[\hat{y} = 25.23 + 0.81x \]

 Note:
 If the line of best fit is drawn and its equation then calculated: 0 / 4 marks

4.3 $r = 0.898$
 \[= 0.90 \ (0.8979098935\ldots) \]

4.4 It is a very strong positive relationship.

 strong
 positive

4.5 \[\hat{y} = 25.23 + 0.81x \]
 \[86 = 25.23 + 0.81x \]
 \[x = 75.024\ldots \]

 Resting heart rate could be 75 beats per minute.

 If a and b are not rounded off in the calculation,
 \[x = 74.626 \ldots \]
 \[x = 74.63 \]

 If candidate draws in the least square regression line and reads of x-value where $y = 86$: full marks

 substitute
 \[\hat{y} = 86 \]

 answer
 \[x = 74.63 \] [13]
QUESTION 5

<table>
<thead>
<tr>
<th></th>
<th>Number licence plates available</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>(21 \times 21 \times 21 \times 10 \times 10 \times 10)</td>
<td>21 (\times 10) (\times) answer (\text{(3)})</td>
</tr>
<tr>
<td></td>
<td>(= 21^3 \times 10^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= 9 , 261,000)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P(starting with Y)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>(\frac{1 \times 21 \times 21 \times 10 \times 10 \times 10}{21 \times 21 \times 21 \times 10 \times 10 \times 10})</td>
<td>21 (\times 10^3) (\text{(CA with 5.1)})</td>
</tr>
<tr>
<td></td>
<td>(= \frac{441,000}{926,100})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(= \frac{1}{21})</td>
<td>Answer only: full marks (\text{(3)})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P(contains number 7)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>(\frac{21 \times 21 \times 21 \times 1 \times 9 \times 9 + 21 \times 21 \times 21 \times 9 \times 1 \times 9 + 21 \times 21 \times 21 \times 9 \times 9 \times 1}{926,100})</td>
<td>3 (\times) denominator (\text{(3)})</td>
</tr>
<tr>
<td></td>
<td>(= \frac{243}{1000}) or 0.243</td>
<td>If did not multiply by 3: max 2 (\text{(3)})</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th></th>
<th>P(contains number 7)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>(\frac{1 \times 9 \times 9 + 9 \times 1 \times 9 + 9 \times 9 \times 1}{1000})</td>
<td>3 or 1(\times 9 \times 9 + 9 \times 1 \times 9 + 9 \times 9 \times 1) (\text{(3)})</td>
</tr>
<tr>
<td></td>
<td>(= \frac{243}{1000}) or 0.243</td>
<td>1.9.9 (\text{denominator})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Number of unique number plates available with no repetition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>(21 \times 20 \times 19 \times 10 \times 9 \times 8)</td>
<td>21 (\times 20 \times 19) (\text{(3)})</td>
</tr>
<tr>
<td></td>
<td>(= 5 , 745 , 600)</td>
<td></td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th></th>
<th>(^{21}P_3 \times ^{10}P_3)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>(\frac{2! \times 10!}{18! \times 7!})</td>
<td>21 (P_3) (\text{(3)})</td>
</tr>
<tr>
<td></td>
<td>(= 5 , 745 , 600)</td>
<td>(10 \times 9 \times 8) (\text{answer})</td>
</tr>
</tbody>
</table>
QUESTION 6

6.1

<table>
<thead>
<tr>
<th>T_1</th>
<th>T_{1+1}</th>
<th>T_{2+1}</th>
<th>T_{3+1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$3 - 4(1) + 5 = 4$</td>
<td>$4 - 4(2) + 5 = 1$</td>
<td>$1 - 4(3) + 5 = -6$</td>
</tr>
</tbody>
</table>

If $3 ; 0 ; -7 ; -18$: max 2 marks

6.2

Quadratic sequence.

It adds a linear sequence to the preceding term.

OR

$$
\begin{align*}
3 & \quad 4 & \quad 1 & \quad -7 & \quad -6 \\
1 & \quad -3 & \quad 1 & \quad -4 & \quad -4
\end{align*}
$$

Quadratic Sequence

Constant second difference of -4

OR

Recursive

Need the previous term to calculate the next term

[3]

[5]
QUESTION 7

\[
\begin{align*}
\hat{D}_1 &= 33^\circ \quad (\angle \text{ in same segment}) \\
\hat{A}_E\hat{D} &= 90^\circ \quad \text{(given)} \\
\hat{A}_1 &= 57^\circ \quad (\angle \text{ sum } \triangle)
\end{align*}
\]

OR

\[
\begin{align*}
\hat{B}_C\hat{E} &= 90^\circ \quad \text{(given)} \\
\hat{B}_1 &= 57^\circ \quad (\angle \text{ sum } \triangle) \\
\hat{A}_1 &= 57^\circ \quad (\angle \text{ in same segment})
\end{align*}
\]

OR

\[
\begin{align*}
\text{DE} &= \text{EB} \quad \text{(line from circ cent } \perp \text{ ch bis ch)} \\
\text{AE} &= \text{common} \\
\hat{A}_E\hat{D} &= \hat{E}_1 = 90^\circ \quad \text{(given)} \\
\triangle AED &= \triangle AEB \quad \text{(SAS)} \\
\hat{A}_C\hat{B} &= 90^\circ \quad (\angle \text{s in semi-circle}) \\
\hat{A}_1 &= \hat{A}_2 = 57^\circ \quad (\angle \text{ sum } \triangle)
\end{align*}
\]

7.2

\[
\begin{align*}
\hat{D}_2 + \hat{D}_1 &= 57^\circ \quad (OD = OA = \text{radii}) \\
\hat{D}_2 &= 24^\circ
\end{align*}
\]

OR

\[
\begin{align*}
\hat{D}\hat{O}\hat{C} &= 114^\circ \quad (OD = OA = \text{radii}) \text{ OR } \angle \text{ at the centre theorem} \\
\hat{E}_2 &= 90^\circ \\
\hat{D}_2 &= 114^\circ - 90^\circ \\
&= 24^\circ
\end{align*}
\]
| 7.3 | \(\triangle ABC = 90^\circ \) (\(\angle \) in semi-circle) \(\hat{A}_2 = 57^\circ \) (\(\angle \) sum \(\triangle \)) \(= \hat{A}_1 \) AE bisects \(\triangle DAB \) |
| OR | DE = EB (line from circ centre bis ch) AE is common \(\hat{E}_1 = \hat{AEB} = 90^\circ \) (given) \(\triangle ADE \equiv \triangle ABE \) (SAS) \(\hat{A}_2 = \hat{A}_1 \) |

✓ \(\triangle ABC = 90^\circ \)
✓ \(\angle \) in semi-circle
✓ \(\hat{A}_2 = \hat{A}_1 \) or AE bisects \(\triangle DAB \)

(3)

✓ DE = EB (S/R)
✓ \(\triangle AED \equiv \triangle AEB \) (SAS)
✓ \(\hat{A}_2 = \hat{A}_1 \) or AE bisects \(\triangle DAB \)

(3)[8]
QUESTION 8

8.1 Draw diameter TP.
Join P to J.
\(\hat{T}_1 + \hat{T}_2 = 90^\circ \) (tan \(\perp \) diameter)
\(\hat{J}_1 + \hat{J}_2 = 90^\circ \) (\(\measuredangle \) in semi-circle)
\(\hat{J}_2 = \hat{T}_2 \) (\(\measuredangle \) in same seg)
TJK = \(\hat{T}_1 \)

OR

Draw radii OT and OK
Let \(x = \hat{T}_2 \) (\(\measuredangle \) opp = radii)
\(\hat{T}_1 = 90^\circ - x \) (rad \(\perp \) tan)
TOK = \(180^\circ - 2x \) (\(\measuredangle \) sum \(\Delta \))
TJK = \(90^\circ - x \) (\(\measuredangle \) circ cent)
TJK = \(\hat{T}_1 \) (= \(90^\circ - x \))

NOTE:
If there is no construction: 0 / 5 marks
If candidate changes lettering and states “Similarly”: max full marks

OR

Draw GT extend to H. Draw tangent KH at K.
TH = KH (tan from comm pt)
\(\hat{K}_1 = \hat{T}_1 \) (\(\measuredangle \) opp = sides)
TOK = \(2\hat{T}_1 \)JJK
(\(\measuredangle \) circ cent = \(2\measuredangle \) circumf)
\(\hat{K}_1 + \hat{T}_2 = 90^\circ \) (tan \(\perp \) radius)
TOK = \(180^\circ - (90^\circ - \hat{T}_1 + 90^\circ - \hat{K}_1) \)
\[= \hat{T}_1 + \hat{K}_1 \]
\[= \hat{T}_1 + \hat{T}_1 \]
\[= 2\hat{T}_1 \]
\(\hat{T}_1 = \frac{1}{2} \hat{K}OT \)
\[= \hat{T}\overline{JK} \)
OR

Construct OT, OJ and OK
\[\hat{T}_1 = \hat{J}_1 = x \quad \text{(radii)} \]
\[\hat{T}_2 = \hat{K}_1 = z \quad \text{(radii)} \]
\[\hat{K}_2 = \hat{J}_2 = y \quad \text{(radii)} \]
\[2x + 2y + 2z = 180^\circ \quad (\angle \text{ sum } \Delta) \]
\[x + y + z = 90^\circ \]
\[x + y = 90^\circ - z \]

O\(\hat{T}H\) = 90° (rad \(\perp\) tan)
\[\hat{T}_3 = 90^\circ - z \]
\[= 90^\circ - (90^\circ - (x + y)) \]
\[= 90^\circ - z \]
\[= \text{TJK} \]
8.2

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.1</td>
<td>$\hat{B}_4 = x$</td>
<td>(tan chord theorem)</td>
</tr>
<tr>
<td></td>
<td>$\hat{A} = \hat{B}_4 = x$</td>
<td>(corres \triangle; BD \parallel AO)</td>
</tr>
<tr>
<td></td>
<td>$\hat{B}_2 = x$</td>
<td>(BO = EO = radii)</td>
</tr>
<tr>
<td>Note:</td>
<td>$\hat{B}_4 = x$</td>
<td>tan chord theorem</td>
</tr>
<tr>
<td></td>
<td>$\hat{A} = \hat{B}_4 = x$ with reason</td>
<td>$\hat{B}_2 = x$</td>
</tr>
<tr>
<td></td>
<td>$\hat{B}_4 = x$</td>
<td>(proved in 8.2.2)</td>
</tr>
<tr>
<td>8.2.2</td>
<td>$\angle DBE = 90^\circ$</td>
<td>(\angle in semi-circle)</td>
</tr>
<tr>
<td></td>
<td>$\angle CBE = 90^\circ + x$</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>$\angle COB = 90^\circ$</td>
<td>(rad \perp tan)</td>
</tr>
<tr>
<td></td>
<td>$\angle CBE = 90^\circ + x$</td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>$\hat{O}_1 = 2x$</td>
<td>(\angle circ cent)</td>
</tr>
<tr>
<td></td>
<td>$\hat{B}_1 = \hat{D}_1 = 90^\circ - x$</td>
<td>(radii)</td>
</tr>
<tr>
<td></td>
<td>$\angle CBE = x + (90^\circ - x) + x$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 90^\circ + x$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{O}_1 = 2x$</td>
<td>(\angle circ cent)</td>
</tr>
<tr>
<td></td>
<td>$\angle CBE = 90^\circ + x$</td>
<td>(3)</td>
</tr>
<tr>
<td>8.2.3</td>
<td>$\angle DBE = 90^\circ$</td>
<td>(proved in 8.2.2)</td>
</tr>
<tr>
<td></td>
<td>$\angle BF0 = 90^\circ$</td>
<td>(co-int angles supp; BD \parallel AO)</td>
</tr>
<tr>
<td></td>
<td>$BF = FE$</td>
<td>(line from circ cent \perp ch bisect ch)</td>
</tr>
<tr>
<td></td>
<td>F is the midpoint of EB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\hat{D}BE = 90^\circ$</td>
<td>(\angle in semi-circle)</td>
</tr>
<tr>
<td></td>
<td>$\angle BF0 = 90^\circ$ and reason</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$BF = FE$</td>
<td>(\angle from circ cent \perp ch bisect ch)</td>
</tr>
<tr>
<td></td>
<td>$\angle BF0 = 90^\circ$</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OR</td>
<td>OD = OE (radii)</td>
<td>✓ OD = OE</td>
</tr>
<tr>
<td></td>
<td>BF = FE (BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F is the midpoint of EB</td>
<td>✓ BF = FE</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>✓ BD</td>
</tr>
<tr>
<td>OR</td>
<td>BFO = EFO = 90° (BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OF is common</td>
<td>✓ BO = OE</td>
</tr>
<tr>
<td></td>
<td>BO = OE (radii)</td>
<td>✓ ΔBOF ≡ ΔEOF</td>
</tr>
<tr>
<td></td>
<td>ΔBOF ≡ ΔEOF (90°HS)</td>
<td>✓ BF = FE</td>
</tr>
<tr>
<td></td>
<td>BF = FE (≡ Δs)</td>
<td>✓ line from circ cent ⊥ ch bisects ch</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>OR</td>
<td>ˆB₂ = ˆA = x (proven)</td>
<td>✓ ΔAOB</td>
</tr>
<tr>
<td></td>
<td>ˆO₂ is common</td>
<td>✓ ABO = BFO</td>
</tr>
<tr>
<td></td>
<td>ΔAOB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABO = BFO</td>
<td>✓ line from circ cent ⊥ ch bisects ch</td>
</tr>
<tr>
<td></td>
<td>ABO = 90° (proven)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>ABO = BFO = 90°</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BF = FE (line from circ cent ⊥ ch bisects ch)</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>DBE = 90° ((\angle) in semi-circle)</td>
<td>✓ DBE = 90°</td>
</tr>
<tr>
<td></td>
<td>ˆB₃ = 90° - x</td>
<td>✓ ˆF₁ = 90°</td>
</tr>
<tr>
<td></td>
<td>ˆO₂ = 90° - x (alt (\angle); BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ˆF₁ = 90° ((\angle) sum Δ)</td>
<td>✓ line from circ cent ⊥ ch bisects ch</td>
</tr>
<tr>
<td></td>
<td>BF = FE (line from circ cent ⊥ ch bisects ch)</td>
<td>(4)</td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td>In ΔOBF and ΔOEF</td>
<td>✓ OB = OE</td>
</tr>
<tr>
<td></td>
<td>1. OB = OE (radii)</td>
<td>✓ BFO = EFO = 90° (BD</td>
</tr>
<tr>
<td></td>
<td>2. BFO = EFO = 90° (BD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. ˆB₂ = ˆE (radii)</td>
<td>✓ BF = FE</td>
</tr>
<tr>
<td></td>
<td>ΔOBF ≡ ΔOEF (AAS)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>BF = FE</td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.2.4</td>
<td>In ΔCBD and ΔCEB</td>
<td>✓ ˆE = ˆB₄ = x</td>
</tr>
<tr>
<td></td>
<td>1. ˆE = ˆB₄ = x (proven in 8.2.1)</td>
<td>✓ ˆC is common</td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. ˆC is common</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>3. ˆD₄ = CBE = 90° + x</td>
<td>✓ ˆD₄ = CBE = 90° + x</td>
</tr>
<tr>
<td></td>
<td>ΔCBD</td>
<td></td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.2.5 \[\frac{EB}{BD} = \frac{CE}{CB} \quad \text{(sim \(\triangle \)s \(\therefore \) sides in proportion)} \]

\[EB.CB = CE.BD \]

but \(EB = 2EF \) (F is the midpoint of BE)

\[2EF.CB = CE.BD \]

\[\frac{EB}{BD} = \frac{CE}{CB} \checkmark \]

\[EB.CB = CE.BD \checkmark \]

\[EB = 2EF \checkmark \]

\[\text{QUESTION 9} \]

9. \[\hat{A} = \hat{D} \quad (\angle \text{ in same seg}) \]

\[\hat{B} = \hat{C} \quad (\angle \text{ in same seg}) \]

\[\hat{AEB} = \hat{DEC} \quad (\text{vert opp } \angle\text{s}) \]

\[\Delta DEC \parallel\Delta AEB \quad (\angle \angle \angle) \]

\[\frac{DE}{EC} = \frac{DC}{AE} = \frac{DC}{AB} \quad \text{(sides in prop)} \]

Let \(AC = 11a \)

\[x = \frac{7a}{4a} = \frac{7}{4} \]

\[x = 3.5a \]

\[y = \frac{8}{7a} \]

\[y = \frac{64}{7a} \]

\[\text{If candidate proves similarity of two triangles: full marks.} \]

\[\text{If candidate does not prove similarity max 3 marks. The triangles have to} \]

\[\text{be in the correct order in order to be given 3 marks.} \]
QUESTION 10

10.1 \(\hat{M}EC = 90^\circ \) (tan \(\perp \) rad)
\(\hat{M}DC = 90^\circ \) (line from cent bisects ch)
\(\hat{M}EC + \hat{M}DC = 180^\circ \)
\(\therefore \) MDCE a cyclic quad (opp \(\angle s \) of quad supplementary)

OR
\(\hat{M}EC = 90^\circ \) (tan \(\perp \) rad)
\(\hat{M}DA = 90^\circ \) (line from cent bisects ch)
\(\hat{M}EC = \hat{M}DA \)
\(\therefore \) MDCE a cyclic quad (ext \(\angle \) quad = int opp)

NOTE: If the word cyclic is used in the last reason: max 2 / 3 marks

10.2 \(MD^2 = MB^2 - DB^2 \) (Pythagoras; \(\triangle MBD \))
\(MC^2 = MD^2 + DC^2 \) (Pythagoras; \(\triangle MDC \))
\(= MB^2 - DB^2 + DC^2 \)

10.3 DB = 30 (given)
MB = 40 (radii)
\(MC^2 = (40)^2 + (50)^2 - (30)^2 \)
\(= 3 \, 200 \)
MC = 40\(\sqrt{2} \) = 56.57
\(MC^2 = ME^2 + CE^2 \) (Pythagoras)
\(CE^2 = 3 \, 200 - 1 \, 600 \)
\(CE^2 = 1 \, 600 \)
CE = 40 mm

OR
\(MC^2 = CE^2 + ME^2 - 2CE.ME \cos \hat{M}EC \)
3200 = \(CE^2 + (40)^2 - 2CE.(40).\cos 90^\circ \)
\(= CE^2 + 1600 \)
\(CE^2 = 1600 \)
CE = 40

\(\sqrt{ } \) MB = ME
\(\sqrt{ } \) DB = 30
\(\sqrt{ } \) MC = 40\(\sqrt{2} \)
(3)
\(\sqrt{ } \) MB = ME
\(\sqrt{ } \) DB = 30
\(\sqrt{ } \) MC = 40\(\sqrt{2} \) or MC = 56.57
(4)

\(\sqrt{ } \) cosine rule
\(\sqrt{ } \) ME = 40
\(\sqrt{ } \) MC = 3200
(3)
\(\sqrt{ } \) answer
(4)

TOTAL: 100